MATHEMATICS – USEFUL FORMULAE

Official NZQA Level 3 Formulae Sheet • Provided during exams

ALGEBRA

Quadratics

ax2+bx+c=0    x=b±b24ac2aax^2+bx+c=0\;\Rightarrow\;x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

Logarithms

y=logbx    x=byy=\log_b x\;\Leftrightarrow\;x=b^y
logb(xy)=logbx+logby\log_b(xy)=\log_b x+\log_b y
logb(xy)=logbxlogby\log_b\left(\frac{x}{y}\right)=\log_b x-\log_b y
logb(xn)=nlogbx\log_b\left(x^n\right)=n\log_b x
logbx=logaxlogab\log_b x=\frac{\log_a x}{\log_a b}

Complex numbers

z=x+iyz=x+iy
z=rcisθz=r\,\mathrm{cis}\,\theta
z=r(cosθ+isinθ)z=r(\cos\theta+i\sin\theta)
z=xiy\overline{z}=x-iy
z=rcis(θ)\overline{z}=r\,\mathrm{cis}(-\theta)
z=r(cosθisinθ)\overline{z}=r(\cos\theta-i\sin\theta)
r=z=zz=x2+y2r=|z|=\sqrt{z\overline{z}}=\sqrt{x^2+y^2}
θ=argz\theta=\arg z
cosθ=xr\cos\theta=\frac{x}{r}
sinθ=yr\sin\theta=\frac{y}{r}

COORDINATE GEOMETRY

Straight Line

yy1=m(xx1)y-y_1=m(x-x_1)

CALCULUS

Differentiation

y = f(x)dy/dx = f'(x)
yy
f(x)    dydx=f(x)f(x)\;\Rightarrow\;\frac{dy}{dx}=f'(x)
ddx[lnx]\frac{d}{dx}[\ln x]
1x\frac{1}{x}
ddx[eax]\frac{d}{dx}[e^{ax}]
aeaxae^{ax}
ddx[sinx]\frac{d}{dx}[\sin x]
cosx\cos x
ddx[cosx]\frac{d}{dx}[\cos x]
sinx-\sin x
ddx[tanx]\frac{d}{dx}[\tan x]
sec2x\sec^2 x
ddx[secx]\frac{d}{dx}[\sec x]
secxtanx\sec x\tan x
ddx[cosecx]\frac{d}{dx}[\cosec x]
cosecxcotx-\cosec x\cot x
ddx[cotx]\frac{d}{dx}[\cot x]
cosec2x-\cosec^2 x

Integration

f(x)∫f(x)dx
xndx\int x^n\,dx
xn+1n+1+c\frac{x^{n+1}}{n+1}+c
(n\neq -1)
1xdx\int \frac{1}{x}\,dx
lnx+c\ln|x|+c
f(x)f(x)dx\int \frac{f'(x)}{f(x)}\,dx
lnf(x)+c\ln|f(x)|+c

Parametric Function

dydx=dydtdtdx\frac{dy}{dx}=\frac{dy}{dt}\cdot\frac{dt}{dx}
d2ydx2=ddt(dydx)dtdx\frac{d^2y}{dx^2}=\frac{d}{dt}\left(\frac{dy}{dx}\right)\cdot\frac{dt}{dx}

DIFFERENTIATION RULES

Product Rule

ddx[f(x)g(x)]=g(x)f(x)+f(x)g(x)\frac{d}{dx}[f(x)g(x)] = g(x)f'(x) + f(x)g'(x)
dydx=vdudx+udvdx\frac{dy}{dx} = v\frac{du}{dx} + u\frac{dv}{dx}
(If y = uv)

Quotient Rule

ddx[f(x)g(x)]=g(x)f(x)f(x)g(x)g(x)2\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2}
dydx=vdudxudvdxv2\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}
(If y = \frac{u}{v})

Chain Rule

ddx[f(g(x))]=f(g(x))g(x)\frac{d}{dx}[f(g(x))] = f'(g(x))\,g'(x)
dydx=dydududx\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}
(If y = f(u) and u = g(x))

NUMERICAL METHODS

abf(x)dx12h[y0+yn+2(y1+y2++yn1)]\int_a^b f(x)\,dx \approx \frac{1}{2}h\left[y_0 + y_n + 2\left(y_1 + y_2 + \cdots + y_{n-1}\right)\right]
(where h = \frac{b-a}{n} and y_r = f(x_r))
abf(x)dx13h[y0+yn+4(y1+y3+)+2(y2+y4+)]\int_a^b f(x)\,dx \approx \frac{1}{3}h\bigl[y_0 + y_n + 4(y_1 + y_3 + \cdots) + 2(y_2 + y_4 + \cdots)\bigr]
(where h = \frac{b-a}{n},\ y_r = f(x_r),\ n is even)

TRIGONOMETRY

cosecθ=1sinθ\cosec\theta=\frac{1}{\sin\theta}
secθ=1cosθ\sec\theta=\frac{1}{\cos\theta}
cotθ=1tanθ\cot\theta=\frac{1}{\tan\theta}
cotθ=cosθsinθ\cot\theta=\frac{\cos\theta}{\sin\theta}
asinA=bsinB=csinC\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
c2=a2+b22abcosCc^2=a^2+b^2-2ab\cos C
cos2θ+sin2θ=1\cos^2\theta+\sin^2\theta=1
tan2θ+1=sec2θ\tan^2\theta+1=\sec^2\theta
cot2θ+1=cosec2θ\cot^2\theta+1=\cosec^2\theta
If sinθ=sinα then θ=nπ+(1)nα\text{If }\sin\theta=\sin\alpha\text{ then }\theta=n\pi+(-1)^n\alpha
(where n is any integer)
If cosθ=cosα then θ=2nπ±α\text{If }\cos\theta=\cos\alpha\text{ then }\theta=2n\pi\pm\alpha
(where n is any integer)
If tanθ=tanα then θ=nπ+α\text{If }\tan\theta=\tan\alpha\text{ then }\theta=n\pi+\alpha
(where n is any integer)
sin(A±B)=sinAcosB±cosAsinB\sin(A\pm B)=\sin A\cos B\pm\cos A\sin B
cos(A±B)=cosAcosBsinAsinB\cos(A\pm B)=\cos A\cos B\mp\sin A\sin B
tan(A±B)=tanA±tanB1tanAtanB\tan(A\pm B)=\frac{\tan A\pm\tan B}{1\mp\tan A\tan B}
sin2A=2sinAcosA\sin 2A=2\sin A\cos A
tan2A=2tanA1tan2A\tan 2A=\frac{2\tan A}{1-\tan^2 A}
cos2A=cos2Asin2A\cos 2A=\cos^2 A-\sin^2 A
cos2A=2cos2A1\cos 2A=2\cos^2 A-1
cos2A=12sin2A\cos 2A=1-2\sin^2 A

Products

2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B=\sin(A+B)+\sin(A-B)
2cosAsinB=sin(A+B)sin(AB)2\cos A\sin B=\sin(A+B)-\sin(A-B)
2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B=\cos(A+B)+\cos(A-B)
2sinAsinB=cos(AB)cos(A+B)2\sin A\sin B=\cos(A-B)-\cos(A+B)

Sums

sinC+sinD=2sin(C+D2)cos(CD2)\sin C+\sin D=2\sin\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)
sinCsinD=2cos(C+D2)sin(CD2)\sin C-\sin D=2\cos\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)
cosC+cosD=2cos(C+D2)cos(CD2)\cos C+\cos D=2\cos\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)
cosCcosD=2sin(C+D2)sin(CD2)\cos C-\cos D=-2\sin\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)
Special angle triangles: 30-60-90 and 45-45-90

MEASUREMENT

Area=12absinC\text{Area}=\frac{1}{2}ab\sin C
Area=12(a+b)h\text{Area}=\frac{1}{2}(a+b)h
Area=12r2θ\text{Area}=\frac{1}{2}r^2\theta
Arc length=rθ\text{Arc length}=r\theta
Volume=πr2h\text{Volume}=\pi r^2 h
Curved surface area=2πrh\text{Curved surface area}=2\pi r h
Volume=13πr2h\text{Volume}=\frac{1}{3}\pi r^2 h
Curved surface area=πrl\text{Curved surface area}=\pi r l
(where l = slant height)
Volume=43πr3\text{Volume}=\frac{4}{3}\pi r^3
Surface area=4πr2\text{Surface area}=4\pi r^2