2024 THREE(d)

Merit
Question
Jamie is doing some baking and pouring
the flour to form a conical pile.

The height of the pile is always the same
as the diameter of the base of the cone.

If the flour is being added at a constant
rate of 3 cm33\ \mathrm{cm}^3 per second, at what rate is
the height increasing when the pile is
4 cm4\ \mathrm{cm} in height?

*You must use calculus and show any*
*derivatives that you need to find when*
*solving this problem.*

Note that volume of a cone =13πr2h= \dfrac{1}{3}\pi r^2 h.
Loading diagram...
Official Answer
Method 1:
V=13πr2h=23πr3V=\frac{1}{3}\pi r^2h=\frac{2}{3}\pi r^3
dVdr=2πr2\frac{dV}{dr}=2\pi r^2
We require dhdt=dhdr×drdV×dVdt\frac{dh}{dt}=\frac{dh}{dr}\times\frac{dr}{dV}\times\frac{dV}{dt}
dhdt=2×12πr2×3\frac{dh}{dt}=2\times\frac{1}{2\pi r^2}\times 3
=3πr2=\frac{3}{\pi r^2}
When h=4 cmh=4\ \mathrm{cm}, r=2 cmr=2\ \mathrm{cm}, so dhdt=34π=0.2387 cm sec1\frac{dh}{dt}=\frac{3}{4\pi}=0.2387\text{ cm sec}^{-1}

OR
Method 2:

V=13πr2h=112πh3V=\frac{1}{3}\pi r^2h=\frac{1}{12}\pi h^3
dVdh=14πh2\frac{dV}{dh}=\frac{1}{4}\pi h^2
We require dhdt=dhdV×dVdt\frac{dh}{dt}=\frac{dh}{dV}\times\frac{dV}{dt}
dhdt=4πh2×3\frac{dh}{dt}=\frac{4}{\pi h^2}\times 3
=12πh2=\frac{12}{\pi h^2}
When h=4 cmh=4\ \mathrm{cm}, dhdt=34π=0.2387 cm sec1\frac{dh}{dt}=\frac{3}{4\pi}=0.2387\text{ cm sec}^{-1}
Units not required.
Grading Criteria

Achievement (u)

  • Correct expression for dhdt\frac{dh}{dt}.

Merit (r)

  • Correct value for dhdt\frac{dh}{dt}, with evidence of a calculus method.

Excellence T1

-

Excellence T2

-
Video Explanation
2024 NCEA L3 Calculus Exam Walkthrough by infinityplusone(starts at 49:28)
Subscribe