2024 TWO(c)

Merit
Question
Show that y=sin(x2)cos(x)y = \sin(x^2) - \cos(x) is a solution to the equation

d2ydx2+4x2y=2cos(x2)+(14x2)cosx\dfrac{d^2y}{dx^2} + 4x^2\,y = 2\cos(x^2) + (1 - 4x^2)\cos x.
Official Answer
dydx=2xcos(x2)+sinx\dfrac{dy}{dx}=2x\cos\left(x^2\right)+\sin x
d2ydx2=2cos(x2)2x2xsin(x2)+cosx\dfrac{d^2y}{dx^2}=2\cos\left(x^2\right)-2x\cdot2x\sin\left(x^2\right)+\cos x
d2ydx2=2cos(x2)4x2sin(x2)+cosx\dfrac{d^2y}{dx^2}=2\cos\left(x^2\right)-4x^2\sin\left(x^2\right)+\cos x
Then LHS =d2ydx2+4x2y=\dfrac{d^2y}{dx^2}+4x^2y
=2cos(x2)4x2sin(x2)+cosx+4x2(sin(x2)cosx)\qquad=2\cos\left(x^2\right)-4x^2\sin\left(x^2\right)+\cos x+4x^2\left(\sin\left(x^2\right)-\cos x\right)
=2cos(x2)+cosx4x2cosx\qquad=2\cos\left(x^2\right)+\cos x-4x^2\cos x
=2cos(x2)+(14x2)cosx\qquad=2\cos\left(x^2\right)+\left(1-4x^2\right)\cos x
=RHS\qquad=\text{RHS}
As required.
Grading Criteria

Achievement (u)

  • Correct expression for dydx\dfrac{dy}{dx}.

Merit (r)

  • Correct justification that it is a solution, with evidence of both dydx\dfrac{dy}{dx} and d2ydx2\dfrac{d^2y}{dx^2}.

Excellence T1

-

Excellence T2

-
Video Explanation
2024 NCEA L3 Calculus Exam Walkthrough by infinityplusone(starts at 22:02)
Subscribe