2015 ONE(e)

Excellence
Question
Salt harvested at the Grassmere Saltworks forms a cone as it falls from a conveyor belt.
The slant of the cone forms an angle of 3030^\circ with the horizontal.
The conveyor belt delivers the salt at a rate of 2 m32\ \mathrm{m}^3 of salt per minute.
Loading diagram...
Find the rate at which the slant height is increasing when the radius of the cone is 10 m10\ \mathrm{m}.
*You must use calculus and show any derivatives that you need to find when solving this
problem.*
Official Answer
Let VV = volume (m3m^3)
SS = slant height (m)
hh = height (m)
rr = radius (m)

cos30=rS\cos 30 = \dfrac{r}{S}

S=rcos30S = \dfrac{r}{\cos 30}

dSdr=1cos30\dfrac{dS}{dr} = \dfrac{1}{\cos 30}

tan30=hr\tan 30 = \dfrac{h}{r}

h=rtan30h = r\tan 30

V=13πr2hV = \dfrac{1}{3}\pi r^2 h

=13πr3tan30\quad = \dfrac{1}{3}\pi r^3\tan 30

dVdr=πr2tan30\dfrac{dV}{dr} = \pi r^2\tan 30

dSdt=dSdr×drdV×dVdt\dfrac{dS}{dt} = \dfrac{dS}{dr} \times \dfrac{dr}{dV} \times \dfrac{dV}{dt}

=1cos30×1πr2tan30×2\quad = \dfrac{1}{\cos 30} \times \dfrac{1}{\pi r^2\tan 30} \times 2

When r=10r = 10 m,

dSdt=1cos30×1π102×tan30×2\dfrac{dS}{dt} = \dfrac{1}{\cos 30} \times \dfrac{1}{\pi 10^2 \times \tan 30} \times 2

=0.01273\quad = 0.01273 m/minute
Grading Criteria

Achievement (u)

  • dSdr\dfrac{dS}{dr} or dVdr\dfrac{dV}{dr} correct.

Merit (r)

  • Valid statement of the relationship between rates.

Excellence T1

  • Correct solution with correct derivatives.

Excellence T2

-