2015 THREE(d)

Merit
Question
The equation of motion of a particle is given by the differential equation

d2xdt2=k2x\dfrac{d^2x}{dt^2} = -k^2x

where xx is the displacement of the particle from the origin at time tt, and kk is a positive
constant.

(i) Show that x=Acoskt+Bsinktx = A\cos kt + B\sin kt, where AA and BB are constants, is a solution of the
equation of motion.

(ii) The particle was initially at the origin and moving with velocity 2k2k.

Find the values of AA and BB in the solution x=Acoskt+Bsinktx = A\cos kt + B\sin kt.
Official Answer
(d)(i)(d)(i)
dxdt=Aksinkt+Bkcoskt\dfrac{dx}{dt}=-Ak\sin kt+Bk\cos kt

d2xdt2=Ak2cosktBk2sinkt\dfrac{d^2x}{dt^2}=-Ak^2\cos kt-Bk^2\sin kt
=k2(Acoskt+Bsinkt)=-k^2(A\cos kt+B\sin kt)
=k2x=-k^2x

(ii)(ii)
x(0)=0Acos0+Bsin0=0x(0)=0\Rightarrow A\cos 0+B\sin 0=0
A=0A=0
v(0)=2k2k=Aksin(0)+Bkcos(0)v(0)=2k\Rightarrow 2k=-Ak\sin(0)+Bk\cos(0)
B=2B=2
Grading Criteria

Achievement (u)

  • Correct dxdt\dfrac{dx}{dt}
  • Or d2xdt2\dfrac{d^2x}{dt^2} consistent with dxdt\dfrac{dx}{dt} incorrect

Merit (r)

  • Parts (i) and (ii) both correct.

Excellence T1

-

Excellence T2

-