2015 THREE(e)

Excellence
Question
A corridor is 2 m wide.

At the end it turns 90° into another corridor.
Loading diagram...
What is the minimum width, ww, of the second corridor if a ladder of length 5 m can be carried
horizontally around the corner?

*You must use calculus and show any derivatives that you need to find when solving this
problem.*
Official Answer
Loading diagram...
cosA=2f\cos A=\dfrac{2}{f}

f=2cosAf=\dfrac{2}{\cos A}

sinA=w5f\sin A=\dfrac{w}{5-f}

w=(5f)sinAw=(5-f)\sin A

=(52cosA)sinA=\left(5-\dfrac{2}{\cos A}\right)\sin A

=5sinA2tanA=5\sin A-2\tan A

dwdA=5cosA2sec2A\dfrac{dw}{dA}=5\cos A-2\sec^2 A

dwdA=05cosA2sec2A=0\dfrac{dw}{dA}=0\Rightarrow 5\cos A-2\sec^2 A=0

5cos3A2=05\cos^3 A-2=0

cos3A=25\cos^3 A=\dfrac{2}{5}

A=42.5A=42.5^\circ

w=1.55 mw=1.55\ \text{m}
Grading Criteria

Achievement (u)

  • Differentiate correctly relatedly but incorrect expression for ww.

Merit (r)

  • Correct dwdA\dfrac{dw}{dA}

Excellence T1

  • Correct solution.

Excellence T2

-