2024 ONE(d)

Merit
Question
Find the xx-value(s) of any stationary points on the graph of the function below, and determine
their nature.

y=(2x1)e2xy = (2x - 1)e^{-2x}

You must use calculus and show any derivatives that you need to find when solving this problem.
Official Answer
dydx=e2x(44x)\dfrac{dy}{dx}=e^{-2x}(4-4x)

d2ydx2=e2x(8x12)\dfrac{d^2y}{dx^2}=e^{-2x}(8x-12)

Solving dydx=e2x(44x)=0\dfrac{dy}{dx}=e^{-2x}(4-4x)=0 gives x=1x=1

Then x=1x=1 gives d2ydx2=e2<0\dfrac{d^2y}{dx^2}=e^{-2}<0

i.e. Maximum when x=1x=1.
Grading Criteria

Achievement (u)

  • Correct expression for dydx\dfrac{dy}{dx}.

Merit (r)

  • Finds x=1x=1 and justifies that this is a maximum using a calculus method, and with evidence of derivative.

Excellence T1

-

Excellence T2

-
Video Explanation
2024 NCEA L3 Calculus Exam Walkthrough by infinityplusone(starts at 7:38)
Subscribe