2023 THREE(d)

Merit
Question
Find the co-ordinates of any stationary points on the graph of the function f(x)=1x2x3f(x)=\frac{1}{x}-\frac{2}{x^3},
identifying their nature.

You must use calculus and show any derivatives that you need to find when solving this problem.
Official Answer
f(x)=x12x3f(x)=x^{-1}-2x^{-3}
f(x)=x2+6x4f'(x)=-x^{-2}+6x^{-4}
=1x2+6x4=-\frac{1}{x^2}+\frac{6}{x^4}
f(x)=01x2+6x4=0f'(x)=0\Rightarrow-\frac{1}{x^2}+\frac{6}{x^4}=0
(x46x2)=0(x^4-6x^2)=0
x2(x26)=0x^2(x^2-6)=0
x=0x=0 not possible
x26=0x^2-6=0
x=±6x=\pm\sqrt{6} or x=±2.45x=\pm 2.45
Second derivative test :
f(x)=2x324x5f''(x)=2x^{-3}-24x^{-5}
=2x324x5=\frac{2}{x^3}-\frac{24}{x^5}
f(6)=0.136=618f''(\sqrt{6})=-0.136=-\frac{\sqrt{6}}{18}
Since f(6)<0f''(\sqrt{6})<0, x=6x=\sqrt{6} is a local maximum.
f(6)=0.136=618f''(-\sqrt{6})=0.136=\frac{\sqrt{6}}{18}
Since f(6)>0f''(-\sqrt{6})>0, x=6x=-\sqrt{6} is a local minimum.
Maximum turning point when x=6x=\sqrt{6}.
Minimum turning point when x=6x=-\sqrt{6}.
Grading Criteria

Achievement (u)

  • Correct derivative.
    AND
    Correct two values of xx found (not x=0x=0).

Merit (r)

  • xx-coordinates of both stationary points found.
    AND
    The nature of the two turning points found with a correct first or second derivative test.

Excellence T1

-

Excellence T2

-
Video Explanation
2023 NCEA L3 Calculus Exam Walkthrough by infinityplusone(starts at 58:35)
Subscribe