2015 TWO(e)

Excellence
Question
A water container is constructed in the shape of a square-based pyramid. The height of the
pyramid is the same as the length of each side of its base.
Loading diagram...
A vertical height of 20 cm is then cut off the top of the pyramid, and a new flat top added.
The pyramid is then inverted and water is poured in at a rate of 3000 cm33000\text{ cm}^3 per minute.
Loading diagram...
Find the rate at which the surface area of the water is increasing when the depth of the water
is 15 cm15\text{ cm}.

Volume of pyramid =13×= \dfrac{1}{3} \times base area ×\times height

*You must use calculus and show any derivatives that you need to find when solving this problem.*
Official Answer
Depth of water =x= x
h=x+20h=x+20
V=13h313203V=\frac{1}{3}h^3-\frac{1}{3}20^3
=13(x+20)313203=\frac{1}{3}(x+20)^3-\frac{1}{3}20^3
dVdx=(x+20)2\frac{dV}{dx}=(x+20)^2
A=(x+20)2A=(x+20)^2
dAdx=2(x+20)\frac{dA}{dx}=2(x+20)
dVdt=3000\frac{dV}{dt}=3000
dAdt=dAdx×dxdV×dVdt\frac{dA}{dt}=\frac{dA}{dx}\times\frac{dx}{dV}\times\frac{dV}{dt}
=2(x+20)×1(x+20)2×3000=2(x+20)\times\frac{1}{(x+20)^2}\times3000
When x=15x=15
dAdt=2×35×1352×3000=171.4 cm2 min1\frac{dA}{dt}=2\times35\times\frac{1}{35^2}\times3000=171.4\ \mathrm{cm}^2\ \mathrm{min}^{-1}
Grading Criteria

Achievement (u)

  • Correct dVdx\dfrac{dV}{dx}
    OR
    dAdx\dfrac{dA}{dx}

Merit (r)

  • Correct dVdx\dfrac{dV}{dx}
    AND
    dAdx\dfrac{dA}{dx}

Excellence T1

  • Correct solution.

Excellence T2

-