2016 ONE(c)

Merit
Question
A curve is defined by the parametric equations

x=2cos2tx = 2\cos 2t and y=tan2ty = \tan^2 t.

Find the gradient of the tangent to the curve at the point where t=π4t = \dfrac{\pi}{4}.

*You must use calculus and show any derivatives that you need to find when solving this problem.*
Official Answer
dxdt=4sin2t\dfrac{dx}{dt}=-4\sin 2t

dydt=2tantsec2t\dfrac{dy}{dt}=2\tan t\sec^2 t

dydx=2tantsec2t4sin2t\dfrac{dy}{dx}=\dfrac{2\tan t\sec^2 t}{-4\sin 2t}

  =2tant4sin2tcos2t\quad\;=\dfrac{2\tan t}{-4\sin 2t\cos^2 t}

At t=π4t=\dfrac{\pi}{4}, dydx=24×(12)2\dfrac{dy}{dx}=\dfrac{2}{-4\times\left(\dfrac{1}{\sqrt{2}}\right)^2}

  =22=1\quad\;=\dfrac{2}{-2}=-1
Grading Criteria

Achievement (u)

  • Correct dxdt\dfrac{dx}{dt} or dydt\dfrac{dy}{dt}

Merit (r)

  • Correct solution with correct derivatives.

Excellence T1

-

Excellence T2

-