2016 TWO(d)

Merit
Question
A large spherical helium balloon is being inflated at a constant rate of 48004800 cm3^3 s1^{-1}.

At what rate is the radius of the balloon increasing when the volume of the balloon is
288000π288\,000\pi cm3^3?

*You must use calculus and show any derivatives that you need to find when solving this
problem.*
Official Answer
dVdt=4800 cm3 s1\dfrac{dV}{dt}=4800\ \text{cm}^3\ \text{s}^{-1}

V=43πr3V=\dfrac{4}{3}\pi r^3

dVdr=4πr2\dfrac{dV}{dr}=4\pi r^2

drdt=drdV×dVdt\dfrac{dr}{dt}=\dfrac{dr}{dV}\times\dfrac{dV}{dt}

=48004πr2=1200πr2=\dfrac{4800}{4\pi r^2}=\dfrac{1200}{\pi r^2}

V=288000π=43πr3V=288000\pi=\dfrac{4}{3}\pi r^3

288000=43r3288000=\dfrac{4}{3}r^3

r3=216000r^3=216000

r=60 cmr=60\ \text{cm}

 drdt=1200π×602=0.106 cm s1\therefore\ \dfrac{dr}{dt}=\dfrac{1200}{\pi\times 60^2}=0.106\ \text{cm}\ \text{s}^{-1}
Grading Criteria

Achievement (u)

  • Correct expression for drdt\dfrac{dr}{dt}

Merit (r)

  • Correct solution drdr with correct drdt\dfrac{dr}{dt} – units not required.

Excellence T1

-

Excellence T2

-