2017 ONE(d)

Merit
Question
A curve is defined parametrically by the equations x=t+1x = \sqrt{t + 1} and y=sin2ty = \sin 2t.

Find the gradient of the tangent to the curve at the point when t=0t = 0.

*You must use calculus and show any derivatives that you need to find when solving this problem.*
Official Answer
dxdt=12(t+1)12=12t+1\dfrac{dx}{dt}=\dfrac{1}{2}(t+1)^{-\frac{1}{2}}=\dfrac{1}{2\sqrt{t+1}}

dydt=2cos2t\dfrac{dy}{dt}=2\cos 2t

dydx=dy/dtdx/dt=2cos2t12t+1\dfrac{dy}{dx}=\dfrac{dy/dt}{dx/dt}=\dfrac{2\cos 2t}{\dfrac{1}{2\sqrt{t+1}}}

=4cos2tt+1=4\cos 2t\,\sqrt{t+1}

At t=0t=0 dydx=4cos0×1\dfrac{dy}{dx}=4\cos 0\times \sqrt{1}

=4=4
Grading Criteria

Achievement (u)

  • dxdt\dfrac{dx}{dt} or dydt\dfrac{dy}{dt} correct.

Merit (r)

  • Correct solution with correct derivatives.

Excellence T1

-

Excellence T2

-
Video Explanation
NCEA Level 3 Calculus Differentiation 2017 NZQA Exam - Worked Answers by infinityplusone(starts at 13:54)
Subscribe