2017 THREE(d)

Merit
Question
A building has an external elevator. The elevator is rising at a constant rate of 2 m s12\ \mathrm{m\ s^{-1}}.

Sarah is stationary, watching the elevator from a point 30 m30\ \mathrm{m} away from the base of the
elevator shaft.

Let the angle of elevation of the elevator floor from Sarah's eye level be θ\theta.
Loading diagram...
Find the rate at which the angle of elevation is increasing when the elevator floor is 20 m20\ \mathrm{m}
above Sarah’s eye level.

*You must use calculus and show any derivatives that you need to find when solving this
problem.*
Official Answer
Let hh = height above Sarah’s eye level.
tanθ=h30\tan\theta=\dfrac{h}{30}
h=30tanθh=30\tan\theta
dhdθ=30sec2θ\dfrac{dh}{d\theta}=30\sec^2\theta
dhdt=2\dfrac{dh}{dt}=2
dθdt=dhdt×dθdh\dfrac{d\theta}{dt}=\dfrac{dh}{dt}\times\dfrac{d\theta}{dh}
dθdt=2×130sec2θ\phantom{\dfrac{d\theta}{dt}}=2\times\dfrac{1}{30\sec^2\theta}
dθdt=cos2θ15\phantom{\dfrac{d\theta}{dt}}=\dfrac{\cos^2\theta}{15}
At h=20h=20
θ=tan1(2030)=0.588\theta=\tan^{-1}\left(\dfrac{20}{30}\right)=0.588
dθdt=(cos0.588)215\dfrac{d\theta}{dt}=\dfrac{(\cos 0.588)^2}{15}
dθdt=0.046\phantom{\dfrac{d\theta}{dt}}=0.046 radians per second
Grading Criteria

Achievement (u)

  • Correct expression for dhdθ\dfrac{dh}{d\theta}

Merit (r)

  • Correct solution with correct derivatives. Ignore units in the solution.

Excellence T1

-

Excellence T2

-
Video Explanation
NCEA Level 3 Calculus Differentiation 2017 NZQA Exam - Worked Answers by infinityplusone(starts at 56:18)
Subscribe