2017 THREE(e)

Excellence
Question
For the function y=excoskxy = e^x \cos kx:

(i) Find dydx\dfrac{dy}{dx} and d2ydx2\dfrac{d^2y}{dx^2}.

(ii) Find all the value(s) of kk such that the function y=excoskxy = e^x \cos kx satisfies the equation

d2ydx22dydx+2y=0\dfrac{d^2y}{dx^2} - 2\dfrac{dy}{dx} + 2y = 0 for all values of xx.
Official Answer
(i) dydx=excoskx+ex(ksinkx)\dfrac{dy}{dx}=e^x\cdot\cos kx+e^x(-k\sin kx)
=ex(coskxksinkx)=e^x(\cos kx-k\sin kx)

d2ydx2=ex(coskxksinkx)\dfrac{d^2y}{dx^2}=e^x(\cos kx-k\sin kx)

+ex(ksinkxk2coskx)\quad\quad +e^x(-k\sin kx-k^2\cos kx)

=ex(coskx2ksinkxk2coskx)=e^x(\cos kx-2k\sin kx-k^2\cos kx)

(ii) d2ydx22dydx+2y=0.\dfrac{d^2y}{dx^2}-2\dfrac{dy}{dx}+2y=0.

ex(coskx2ksinkxk2coskx)\Rightarrow e^x(\cos kx-2k\sin kx-k^2\cos kx)

2ex(coskxksinkx)+2excoskx=0\quad -2e^x(\cos kx-k\sin kx)+2e^x\cos kx=0

ex(coskxk2coskx)=0\Rightarrow e^x(\cos kx-k^2\cos kx)=0

excoskx(1k2)=0^x\cos kx(1-k^2)=0

k=±1k=\pm1
Grading Criteria

Achievement (u)

  • Correct expression for dydx\dfrac{dy}{dx}

Merit (r)

  • Correct expression for d2ydx2\dfrac{d^2y}{dx^2}

Excellence T1

  • Correct solution with correct derivatives.

Excellence T2

-
Video Explanation
NCEA Level 3 Calculus Differentiation 2017 NZQA Exam - Worked Answers by infinityplusone(starts at 62:43)
Subscribe