2018 ONE(c)

Merit
Question
Find the gradient of the curve y=lnsin2xy = \ln|\sin^2 x| at the point where x=π6x = \dfrac{\pi}{6}

You must use calculus and show any derivatives that you need to find when solving this
problem.
Official Answer
y=lnsin2xy=\ln|\sin^2 x|

dydx=2sinxcosxsin2x\dfrac{dy}{dx}=\dfrac{2\sin x\cos x}{\sin^2 x}

=2cosxsinx=\dfrac{2\cos x}{\sin x}

OR

y=lnsin2xy=\ln|\sin^2 x|

=2lnsinx=2\ln|\sin x|

dydx=2cosxsinx\dfrac{dy}{dx}=\dfrac{2\cos x}{\sin x} etc

When x=π6x=\dfrac{\pi}{6}, dydx=2cosπ6sinπ6\dfrac{dy}{dx}=\dfrac{2\cos\dfrac{\pi}{6}}{\sin\dfrac{\pi}{6}}

=23=2\sqrt{3}

(=3.4641)(=3.4641)
Grading Criteria

Achievement (u)

  • Correct expression for dydx\dfrac{dy}{dx}

Merit (r)

  • Correct solution with correct expression for dydx\dfrac{dy}{dx}

Excellence T1

-

Excellence T2

-
Video Explanation
NCEA Level 3 Calculus Differentiation 2018 NZQA Exam - Worked Answers by infinityplusone(starts at 4:12)
Subscribe