2018 ONE(e)

Excellence
Question
A curve is defined by the parametric equations

x=t3+1x = t^3 + 1
y=t2+1y = t^2 + 1

Show that d2ydx2(dydx)4\dfrac{\dfrac{d^2y}{dx^2}}{\left(\dfrac{dy}{dx}\right)^4} is a constant.
Official Answer
dxdt=3t2dydt=2t\dfrac{dx}{dt}=3t^2\qquad \dfrac{dy}{dt}=2t
dydx=dydt×dtdx=2t13t2=23t\dfrac{dy}{dx}=\dfrac{dy}{dt}\times\dfrac{dt}{dx}=2t\cdot\dfrac{1}{3t^2}=\dfrac{2}{3t}
d2ydx2=d(dydx)dt×dtdx\dfrac{d^2y}{dx^2}=\dfrac{d\left(\dfrac{dy}{dx}\right)}{dt}\times\dfrac{dt}{dx}
=23t2×13t2=29t4=\dfrac{-2}{3t^2}\times\dfrac{1}{3t^2}=\dfrac{-2}{9t^4}
(dydx)4=(23t)4\left(\dfrac{dy}{dx}\right)^4=\left(\dfrac{2}{3t}\right)^4
d2ydx2(dydx)4=29t4÷(23t)4\dfrac{\dfrac{d^2y}{dx^2}}{\left(\dfrac{dy}{dx}\right)^4}=\dfrac{-2}{9t^4}\div\left(\dfrac{2}{3t}\right)^4
=29t4×81t416=\dfrac{-2}{9t^4}\times\dfrac{81t^4}{16}
=98 or 1.125=\dfrac{-9}{8}\text{ or }-1.125
Grading Criteria

Achievement (u)

  • Correct dydx\dfrac{dy}{dx}

Merit (r)

  • Correct d2ydx2\dfrac{d^2y}{dx^2}

Excellence T1

  • Correct solution with correct derivatives.

Excellence T2

-
Video Explanation
NCEA Level 3 Calculus Differentiation 2018 NZQA Exam - Worked Answers by infinityplusone(starts at 14:30)
Subscribe