2018 THREE(d)

Merit
Question
Find the equation of the tangent to the curve y=x2lnxy = x^2\ln x at the point where x=ex = e.

*You must use calculus and show any derivatives that you need to find when solving this problem.*
Official Answer
dydx=2xlnx+x21x\dfrac{dy}{dx}=2x\cdot \ln x + x^2\cdot \dfrac{1}{x}

dydx=2xlnx+x\dfrac{dy}{dx}=2x\cdot \ln x + x

x=edydx=2elne+ex=e\Rightarrow \dfrac{dy}{dx}=2e\cdot \ln e + e

=3e=3e

Equation of tangent:

yy1=m(xx1)y-y_1=m(x-x_1)

ye2=3e(xe)y-e^2=3e(x-e)

ye2=3ex3e2y-e^2=3ex-3e^2

y=3ex2e2y=3ex-2e^2

(y=8.155x14.778)(y=8.155x-14.778)
Grading Criteria

Achievement (u)

  • Correct expression for dydx\dfrac{dy}{dx}

Merit (r)

  • Correct solution with correct derivative.
  • Accept any equivalent form.

Excellence T1

-

Excellence T2

-
Video Explanation
NCEA Level 3 Calculus Differentiation 2018 NZQA Exam - Worked Answers by infinityplusone(starts at 48:00)
Subscribe