2019 ONE(c)

Merit
Question
Find the gradient of the tangent to the curve y=e2x1+x2y = \dfrac{e^{2x}}{1+x^2} at the point where x=2x = 2.

*You must use calculus and show any derivatives that you need to find when solving this problem.*
Official Answer
Quotient rule

dydx=(1+x2)2e2xe2x(2x)(1+x2)2\dfrac{dy}{dx}=\dfrac{(1+x^2)2e^{2x}-e^{2x}(2x)}{(1+x^2)^2}

OR

Product rule

dydx=e2x(2x)(1+x2)2+(1+x2)1(2e2x)\dfrac{dy}{dx}=e^{2x}(-2x)(1+x^2)^{-2}+(1+x^2)^{-1}(2e^{2x})

When x=2x=2, dydx=6e425\dfrac{dy}{dx}=\dfrac{6e^4}{25} or 13.113.1
Grading Criteria

Achievement (u)

  • Correct derivative.

Merit (r)

  • Correct solution with correct derivative.

Excellence T1

-

Excellence T2

-
Video Explanation
NCEA Level 3 Calculus Differentiation 2019 NZQA Exam - Worked Answers by infinityplusone(starts at 4:49)
Subscribe