2019 THREE(e)

Excellence
Question
The graph below shows the function y=236x2y = 2\sqrt{36 - x^2}, and the tangent to that function at point P.
The tangent intersects the xx-axis at the point (8,0)(8,0).
Loading diagram...
Find the xx-coordinate of point P.
*You must use calculus and show any derivatives that you need to find when solving this
problem.*
Official Answer
y=236x2y=2\sqrt{36-x^2}
dydx=(36x2)122x\dfrac{dy}{dx}=(36-x^2)^{-\frac{1}{2}}\cdot-2x
=2x36x2=\dfrac{-2x}{\sqrt{36-x^2}}

Gradient of tangent =236x2(8x)=\dfrac{-2\sqrt{36-x^2}}{(8-x)}
=236x2x8=\dfrac{2\sqrt{36-x^2}}{x-8}
236x2x8=2x36x2\therefore \dfrac{2\sqrt{36-x^2}}{x-8}=\dfrac{-2x}{\sqrt{36-x^2}}
2(36x2)=16x2x22(36-x^2)=16x-2x^2
722x2=16x2x272-2x^2=16x-2x^2
72=16x72=16x
x=4.5x=4.5
Or alternatively:
y=2x36x2(x8)y=\dfrac{-2x}{\sqrt{36-x^2}}(x-8)
y=2x236x2+16x36x2y=\dfrac{-2x^2}{\sqrt{36-x^2}}+\dfrac{16x}{\sqrt{36-x^2}}
Substituting for yy :
236x2=2x236x2+16x36x22\sqrt{36-x^2}=\dfrac{-2x^2}{\sqrt{36-x^2}}+\dfrac{16x}{\sqrt{36-x^2}}
2(36x2)=2x2+16x2(36-x^2)=-2x^2+16x
36x2=x2+8x36-x^2=-x^2+8x
36=8x36=8x
x=4.5x=4.5
Grading Criteria

Achievement (u)

  • Correct dydx\dfrac{dy}{dx} of curve.

Merit (r)

  • Correct dydx\dfrac{dy}{dx} of curve.
    AND
    Correct gradient of tangent.
    OR
    Correct equation of tangent involving expression for dydx\dfrac{dy}{dx}.

Excellence T1

  • Correct solution with correct derivatives.

Excellence T2

-
Video Explanation
NCEA Level 3 Calculus Differentiation 2019 NZQA Exam - Worked Answers by infinityplusone(starts at 57:30)
Subscribe