2019 TWO(e)

Excellence
Question
If y=euy = e^u and u=sin2xu = \sin 2x show that

d2ydx2=d2ydu2(dudx)2+dydud2udx2\dfrac{d^2 y}{dx^2} = \dfrac{d^2 y}{du^2}\left(\dfrac{du}{dx}\right)^2 + \dfrac{dy}{du}\cdot\dfrac{d^2 u}{dx^2}

*You must use calculus and show any derivatives that you need to find when solving this
problem.*
Official Answer
LHS
y=esin2xy=e^{\sin 2x}
dydx=esin2x×2cos2x\dfrac{dy}{dx}=e^{\sin 2x}\times 2\cos 2x
d2ydx2=esin2x×(4sin2x)+esin2x×(2cos2x)2\dfrac{d^2y}{dx^2}=e^{\sin 2x}\times(-4\sin 2x)+e^{\sin 2x}\times(2\cos 2x)^2
u=sin2xu=\sin 2x
dudx=2cos2x\dfrac{du}{dx}=2\cos 2x
d2udx2=4sin2x\dfrac{d^2u}{dx^2}=-4\sin 2x
y=euy=e^u
dydu=eu\dfrac{dy}{du}=e^u
d2ydu2=eu\dfrac{d^2y}{du^2}=e^u
RHS
d2ydu2×(dudx)2+dydu×d2udx2\dfrac{d^2y}{du^2}\times\left(\dfrac{du}{dx}\right)^2+\dfrac{dy}{du}\times\dfrac{d^2u}{dx^2}
=eu×(2cos2x)2+eu×(4sin2x)=e^u\times(2\cos 2x)^2+e^u\times(-4\sin 2x)
=esin2x×(2cos2x)2+esin2x×(4sin2x)=e^{\sin 2x}\times(2\cos 2x)^2+e^{\sin 2x}\times(-4\sin 2x)
Therefore LHS = RHS as required.
d2ydx2=4esin2x(cos22xsin2x)\dfrac{d^2y}{dx^2}=4e^{\sin 2x}(\cos^2 2x-\sin 2x)
Grading Criteria

Achievement (u)

  • Correct expression for dydx\dfrac{dy}{dx} or dudx\dfrac{du}{dx}.

Merit (r)

  • Correct expressions for d2ydx2\dfrac{d^2y}{dx^2} in any equivalent form.
    Or correct RHS.

Excellence T1

  • Complete proof.
    Accept in terms of xx, yy, and uu.

Excellence T2

-
Video Explanation
NCEA Level 3 Calculus Differentiation 2019 NZQA Exam - Worked Answers by infinityplusone(starts at 36:58)
Subscribe