2020 ONE(e)

Excellence
Question
A cylinder of height hh and radius rr is inscribed, as shown to the
right, inside a sphere of radius 20 cm.
Loading diagram...
Find the maximum possible volume of the cylinder.

*You must use calculus and show any derivatives that you need to
find when solving this problem.*

*You do not need to prove that the volume you have found is a
maximum.*
Official Answer
r2+(h2)2=400r^2+\left(\dfrac{h}{2}\right)^2=400

r2=400h24r^2=400-\dfrac{h^2}{4}

Vcyl=πr2hV_{cyl}=\pi r^2h

=π(400h24)h\qquad=\pi\left(400-\dfrac{h^2}{4}\right)h

=π(400hh34)\qquad=\pi\left(400h-\dfrac{h^3}{4}\right)

dVdh=π(4003h24)\dfrac{dV}{dh}=\pi\left(400-\dfrac{3h^2}{4}\right)

dVdh=04003h24=0\dfrac{dV}{dh}=0\Rightarrow 400-\dfrac{3h^2}{4}=0

h=16003=403=23.1cmh=\sqrt{\dfrac{1600}{3}}=\dfrac{40}{\sqrt{3}}=23.1\,\text{cm}

r=16.3cmr=16.3\,\text{cm}

V=π×16.32×23.1V=\pi\times 16.3^2\times 23.1

=19 300cm3\qquad=19\ 300\,\text{cm}^3

V=19 347cm3V=19\ 347\,\text{cm}^3
Loading diagram...
Grading Criteria

Achievement (u)

  • Correct expression for dVdh\dfrac{dV}{dh} or dVdr\dfrac{dV}{dr}

Merit (r)

  • Correct value of rr or hh with correct derivatives.
  • Units not required.

Excellence T1

  • Correct solution with correct derivatives.
  • Units not required.

Excellence T2

-
Video Explanation
NCEA Level 3 Calculus Differentiation 2020 NZQA Exam - Worked Answers by infinityplusone(starts at 11:00)
Subscribe