2020 THREE(c)

Merit
Question
The normal to the graph of the function y=2x+1y = \sqrt{2x + 1} at the point (4,3)(4,3) intersects the xx-axis at point P.
Loading diagram...
Find the xx-coordinate of point P.

*You must use calculus and show any derivatives that you need to find when solving this
problem.*
Official Answer
y=(2x+1)12y=(2x+1)^{\frac{1}{2}}
dydx=12(2x+1)12×2\frac{dy}{dx}=\frac{1}{2}(2x+1)^{-\frac{1}{2}}\times 2
=(2x+1)12=(2x+1)^{-\frac{1}{2}}
=12x+1=\frac{1}{\sqrt{2x+1}}
At x=4 dydx=13x=4\ \frac{dy}{dx}=\frac{1}{3}
Normal gradient =3=-3
y3=3(x4)y-3=-3(x-4)
y=3x+15y=-3x+15
xx-intercept y=0\Rightarrow y=0
x=5x=5
Grading Criteria

Achievement (u)

  • Correct derivative.

Merit (r)

  • Correct solution with correct derivative.
    Must have correct gradient of normal to justify x=5x=5

Excellence T1

-

Excellence T2

-
Video Explanation
NCEA Level 3 Calculus Differentiation 2020 NZQA Exam - Worked Answers by infinityplusone(starts at 44:17)
Subscribe