2020 THREE(d)

Excellence
Question
The graph of the function y=1x3+xy = \dfrac{1}{x - 3} + x, x3x \ne 3, has two stationary points.

Find the xx-coordinates of the stationary points, and determine whether they are local maxima
or local minima.

*You must use calculus and show any derivatives that you need to find when solving this
problem.*
Official Answer
y=(x3)1+xy=(x-3)^{-1}+x
dydx=1(x3)2+1\dfrac{dy}{dx}=-1(x-3)^{-2}+1
=1(x3)2+1\qquad=\dfrac{-1}{(x-3)^2}+1
dydx=0x3=±1\dfrac{dy}{dx}=0\Rightarrow x-3=\pm 1
x=2 or 4x=2\text{ or }4
d2ydx2=2(x3)3\dfrac{d^2y}{dx^2}=\dfrac{2}{(x-3)^3}
x=2d2ydx2<0 Local max at x=2x=2\Rightarrow \dfrac{d^2y}{dx^2}<0\ \text{Local max at }x=2
x=4d2ydx2>0 Local min at x=4x=4\Rightarrow \dfrac{d^2y}{dx^2}>0\ \text{Local min at }x=4
Grading Criteria

Achievement (u)

  • Correct expression for dydx\dfrac{dy}{dx}.

Merit (r)

  • Correct expressions for dydx\dfrac{dy}{dx} and d2ydx2\dfrac{d^2y}{dx^2}
  • OR
    Correct expression for dydx\dfrac{dy}{dx} plus xx-coordinates of TPs found and nature stated without correct use of first or second derivative test.

Excellence T1

  • Correct solution with correct derivatives. With use of the first derivative test or second derivative test to justify the nature of the turning points.

Excellence T2

-
Video Explanation
NCEA Level 3 Calculus Differentiation 2020 NZQA Exam - Worked Answers by infinityplusone(starts at 48:15)
Subscribe