2021 ONE(d)

Excellence
Question
A curve is defined parametrically by the equations x=t2+3tx = t^2 + 3t and y=t2ln(2t3)y = t^2 \ln(2t - 3), for t>32t > \dfrac{3}{2}.

Find the gradient of the tangent to the curve at the point (10,0)(10,0).

*You must use calculus and show any derivatives that you need to find when solving this problem.*
Official Answer
x=t2+3tx=t^2+3t
dxdt=2t+3\dfrac{dx}{dt}=2t+3
y=t2ln(2t3)y=t^2\ln(2t-3)
dydt=2tln(2t3)+2t22t3\dfrac{dy}{dt}=2t\ln(2t-3)+\dfrac{2t^2}{2t-3}
dydx=2tln(2t3)+2t22t32t+3\dfrac{dy}{dx}=\dfrac{2t\ln(2t-3)+\dfrac{2t^2}{2t-3}}{2t+3}
At (10,0): t2+3t=10(10,0):\ t^2+3t=10
t2+3t10=0t^2+3t-10=0
(t+5)(t2)=0(t+5)(t-2)=0
t=5 or t=2t=-5\ \text{or}\ t=2
Since t>32, t=2t>\dfrac{3}{2},\ t=2
dydx=4ln(1)+87\dfrac{dy}{dx}=\dfrac{4\ln(1)+8}{7}
dydx=87\dfrac{dy}{dx}=\dfrac{8}{7}
Grading Criteria

Achievement (u)

  • dydt\dfrac{dy}{dt} correct.

Merit (r)

  • dydt\dfrac{dy}{dt} correct
  • And
  • t2+3t=10t^2+3t=10
  • solved to find
  • t=5t=-5 or t=2t=2

Excellence T1

  • T1:
    Correct solution
    with correct dydx\dfrac{dy}{dx}.

Excellence T2

-
Video Explanation
NCEA Level 3 Calculus Differentiation 2021 NZQA Exam - Worked Answers by infinityplusone(starts at 13:19)
Subscribe