2021 THREE(e)

Excellence
Question
A lamp is suspended above the centre of a round table of radius rr.

The height, hh, of the lamp above the table is adjustable.
Loading diagram...
Point P is on the edge of the table.

At point P the illumination II is directly proportional to the cosine of angle θ\theta in the above diagram,
and inversely proportional to the square of the distance, SS, to the lamp.

i.e. I=kcosθS2I = \dfrac{k\cos\theta}{S^2}, where kk is a constant.

Prove that the edge of the table will have maximum illumination when h=r2h = \dfrac{r}{\sqrt{2}}.

*You do not need to prove that your solution gives the maximum value.*

*You must use calculus and show any derivatives that you need to find when solving this problem.*
Official Answer
cosθ=hS\cos\theta=\dfrac{h}{S}
S2=h2+r2S^2=h^2+r^2
S=h2+r2S=\sqrt{h^2+r^2}
kk and rr are constant
I=kcosθS2I=\dfrac{k\cos\theta}{S^2}
I=khSS2I=\dfrac{k\dfrac{h}{S}}{S^2}
=khS3=\dfrac{kh}{S^3}
I=kh(h2+r2)32I=\dfrac{kh}{\left(h^2+r^2\right)^{\frac{3}{2}}}
dIdh=(h2+r2)32kkh(32)(h2+r2)12(2h)(h2+r2)3\dfrac{dI}{dh}=\dfrac{\left(h^2+r^2\right)^{\frac{3}{2}}k-kh\left(\dfrac{3}{2}\right)\left(h^2+r^2\right)^{\frac{1}{2}}(2h)}{\left(h^2+r^2\right)^3}
dIdh=k(h2+r2)323kh2(h2+r2)12(h2+r2)3\dfrac{dI}{dh}=\dfrac{k\left(h^2+r^2\right)^{\frac{3}{2}}-3kh^2\left(h^2+r^2\right)^{\frac{1}{2}}}{\left(h^2+r^2\right)^3}
dIdh=k(h2+r2)12(h2+r23h2)(h2+r2)3\dfrac{dI}{dh}=\dfrac{k\left(h^2+r^2\right)^{\frac{1}{2}}\left(h^2+r^2-3h^2\right)}{\left(h^2+r^2\right)^3}
dIdh=k(r22h2)(h2+r2)52\dfrac{dI}{dh}=\dfrac{k\left(r^2-2h^2\right)}{\left(h^2+r^2\right)^{\frac{5}{2}}}
dIdh=0k(r22h2)=0\dfrac{dI}{dh}=0 \Rightarrow k\left(r^2-2h^2\right)=0
2h2=r22h^2=r^2
h2=r22h^2=\dfrac{r^2}{2}
h=r2h=\dfrac{r}{\sqrt{2}}
Grading Criteria

Achievement (u)

-

Merit (r)

  • Correct expression for dIdh\dfrac{dI}{dh}

Excellence T1

-

Excellence T2

  • Correct proof with correct derivative
Video Explanation
NCEA Level 3 Calculus Differentiation 2021 NZQA Exam - Worked Answers by infinityplusone(starts at 75:34)
Subscribe