y=2x−4dxdy=2x−41Gradient of tangent
=x+2y−12x−41=x+22x−4−1x+2=2x−4−2x−42x−4=x−62x−4=x2−12x+36x2−14x+40=0(x−4)(x−10)=0x=4 or
x=10Rejecting
x=4 by checking the surd equation
x=10 16=4 True
x=4 4=−2 False
One solution:
x=10Therefore, the coordinates of point P are
(10,4)OR
Rejecting
x=4 by checking the gradient:
At
(10,4),
dxdy=161=41Gradient:
x+2y−1=123=41At
(4,2),
dxdy=41=21Gradient:
x+2y−1=61One solution:
x=10Therefore, the coordinates of point P are
(10,4)