2021 TWO(e)

Excellence
Question
The graph below shows the curve y=2x4y = \sqrt{2x - 4}, and the tangent to the curve at point P.
The tangent passes through the point (2,1)(-2, 1).
Loading diagram...
Find the coordinates of point P.

*You must use calculus and show any derivatives that you need to find when solving this problem.*
Official Answer
y=2x4y=\sqrt{2x-4}
dydx=12x4\dfrac{dy}{dx}=\dfrac{1}{\sqrt{2x-4}}

Gradient of tangent=y1x+2=\dfrac{y-1}{x+2}

12x4=2x41x+2\dfrac{1}{\sqrt{2x-4}}=\dfrac{\sqrt{2x-4}-1}{x+2}

x+2=2x42x4x+2=2x-4-\sqrt{2x-4}

2x4=x6\sqrt{2x-4}=x-6

2x4=x212x+362x-4=x^2-12x+36

x214x+40=0x^2-14x+40=0

(x4)(x10)=0(x-4)(x-10)=0

x=4x=4 or x=10x=10

Rejecting x=4x=4 by checking the surd equation

x=10x=10 16=4\sqrt{16}=4 True

x=4x=4 4=2\sqrt{4}=-2 False

One solution: x=10x=10

Therefore, the coordinates of point P are (10,4)(10,4)

OR

Rejecting x=4x=4 by checking the gradient:

At (10,4)(10,4), dydx=116=14\dfrac{dy}{dx}=\dfrac{1}{\sqrt{16}}=\dfrac{1}{4}

Gradient: y1x+2=312=14\dfrac{y-1}{x+2}=\dfrac{3}{12}=\dfrac{1}{4}

At (4,2)(4,2), dydx=14=12\dfrac{dy}{dx}=\dfrac{1}{\sqrt{4}}=\dfrac{1}{2}

Gradient: y1x+2=16\dfrac{y-1}{x+2}=\dfrac{1}{6}

One solution: x=10x=10

Therefore, the coordinates of point P are (10,4)(10,4)
Grading Criteria

Achievement (u)

  • Correct derivative: dydx=12x4\dfrac{dy}{dx}=\dfrac{1}{\sqrt{2x-4}}

Merit (r)

  • Correct derivative: dydx=12x4\dfrac{dy}{dx}=\dfrac{1}{\sqrt{2x-4}} and 2x4=x6\sqrt{2x-4}=x-6

Excellence T1

  • T1: Correct solution with correct derivative: P (10,4)\mathrm{P}\ (10,4) without any justification for x4x\ne 4

Excellence T2

  • T2: Correct solution with correct derivative: P (10,4)\mathrm{P}\ (10,4): x4x\ne 4 must be justified with respect to either the surd equation or the gradient of the tangent.
Video Explanation
NCEA Level 3 Calculus Differentiation 2021 NZQA Exam - Worked Answers by infinityplusone(starts at 44:24)
Subscribe