2022 ONE(c)

Merit
Question
The graph below shows the function y=x+2y = \sqrt{x + 2}, and the normal to the function at the point where
the function intersects the yy-axis.
Loading diagram...
Find the coordinates of point P, the xx-intercept of the normal.

*You must use calculus and show any derivatives that you need to find when solving this problem.*
Official Answer
y=x+2y=\sqrt{x+2}
dydx=12(x+2)12\dfrac{dy}{dx}=\dfrac{1}{2}(x+2)^{-\frac{1}{2}}
=12x+2=\dfrac{1}{2\sqrt{x+2}}
At x=0x=0, dydx=122\dfrac{dy}{dx}=\dfrac{1}{2\sqrt{2}} and y=2y=\sqrt{2}

Equation of normal is y=22x+2y=-2\sqrt{2}x+\sqrt{2}
xx intercept (y=0)(y=0) 0=22x+20=-2\sqrt{2}x+\sqrt{2}
x=12x=\dfrac{1}{2}

Coordinate of PP is (12,0)\left(\dfrac{1}{2},0\right)
Grading Criteria

Achievement (u)

  • Correct derivative with dydx\dfrac{dy}{dx} evaluated at x=0x=0.

Merit (r)

  • Correct solution with correct dydx\dfrac{dy}{dx}.
  • Accept x=12x=\dfrac{1}{2}.
  • y=0y=0 can be implied in the working.

Excellence T1

-

Excellence T2

-
Video Explanation
2022 NCEA L3 Calculus Exam Walkthrough by infinityplusone(starts at 4:45)
Subscribe