2022 ONE(d)

Merit
Question
A curve is defined parametrically by the equations:

x=2+3tx = 2 + 3t and y=3tln(3t1)y = 3t - \ln(3t - 1) where t>13t > \dfrac{1}{3}.

Find the coordinates, (x,y)(x,y), of any point(s) on the curve where the tangent to the curve has a gradient
of 12\dfrac{1}{2}.

*You must use calculus and show any derivatives that you need to find when solving this problem.*
Official Answer
dxdt=3\dfrac{dx}{dt}=3

dydt=333t1\dfrac{dy}{dt}=3-\dfrac{3}{3t-1}

=3(3t1)33t1=\dfrac{3(3t-1)-3}{3t-1}

=9t63t1=\dfrac{9t-6}{3t-1}

dydx=9t63t1×13\dfrac{dy}{dx}=\dfrac{9t-6}{3t-1}\times\dfrac{1}{3}

=3t23t1=\dfrac{3t-2}{3t-1}

dydx=12\dfrac{dy}{dx}=\dfrac{1}{2}

3t23t1=12\dfrac{3t-2}{3t-1}=\dfrac{1}{2}

6t4=3t16t-4=3t-1

3t=33t=3

t=1t=1

x=5y=3ln2 or 2.307x=5\quad y=3-\ln 2\text{ or }2.307
Grading Criteria

Achievement (u)

  • Correct expression for dydx\dfrac{dy}{dx}.

Merit (r)

  • Correct solution with correct dydx\dfrac{dy}{dx}.

Excellence T1

-

Excellence T2

-
Video Explanation
2022 NCEA L3 Calculus Exam Walkthrough by infinityplusone(starts at 11:19)
Subscribe