2022 THREE(d)

Excellence
Question
Find the xx-value(s) of any stationary point(s) on the graph of the function y=9x2+33x1y = 9x - 2 + \dfrac{3}{3x - 1} and
determine their nature.

*You must use calculus and show any derivatives that you need to find when solving this problem.*
Official Answer
y=9x2+33x1y=9x-2+\dfrac{3}{3x-1}
dydx=93(3x1)2×3\dfrac{dy}{dx}=9-3(3x-1)^{-2}\times 3
=99(3x1)2=9-\dfrac{9}{(3x-1)^2}

Stationary point dydx=0\dfrac{dy}{dx}=0

99(3x1)2=09-\dfrac{9}{(3x-1)^2}=0

9=9(3x1)29=\dfrac{9}{(3x-1)^2}

(3x1)2=1(3x-1)^2=1

3x1=±13x-1=\pm 1

x=1±13x=\dfrac{1\pm 1}{3}

x=0x=0 or x=23x=\dfrac{2}{3}

d2ydx2=54(3x1)3\dfrac{d^2y}{dx^2}=\dfrac{54}{(3x-1)^3}

x=0d2ydx2=54(1)3<0x=0\quad \dfrac{d^2y}{dx^2}=\dfrac{54}{(-1)^3}<0

Local max at x=0x=0

x=23d2ydx2=54(1)3>0x=\dfrac{2}{3}\quad \dfrac{d^2y}{dx^2}=\dfrac{54}{(1)^3}>0

Local min at x=23x=\dfrac{2}{3}
Grading Criteria

Achievement (u)

  • Correct derivative.

Merit (r)

  • Correct solution with correct derivative.
  • The nature of each turning point stated but not determined using a calculus method.

Excellence T1

  • T1 Correct solution with correct derivative.
  • The nature of each turning point determined with a first or second derivative test.

Excellence T2

-
Video Explanation
2022 NCEA L3 Calculus Exam Walkthrough by infinityplusone(starts at 62:31)
Subscribe