2022 TWO(e)

Excellence
Question
The curve with the equation (y5)2=16(x2)(y-5)^2 = 16(x-2) has a tangent of gradient 1 at point P.
Loading diagram...
This tangent intersects the xx and yy axes at points R and S respectively.

Prove that the length RS is 727\sqrt{2}.

*You must use calculus and show any derivatives that you need to find when solving this problem.*
Official Answer
(y5)2=16(x2)(y-5)^2=16(x-2)
Method A
y5=4x2y-5=4\sqrt{x-2}
y=4x2+5y=4\sqrt{x-2}+5
dydx=2x2\frac{dy}{dx}=\frac{2}{\sqrt{x-2}}
dydx=1\frac{dy}{dx}=1
2x2=1\frac{2}{\sqrt{x-2}}=1
x2=2\sqrt{x-2}=2
x2=4x-2=4
x=6x=6
y=13y=13
Method B
2(y5)dydx=162(y-5)\frac{dy}{dx}=16
dydx=8y5\frac{dy}{dx}=\frac{8}{y-5}
dydx=1\frac{dy}{dx}=1
8y5=1\frac{8}{y-5}=1
y=13y=13
64=16x3264=16x-32
x=6x=6
Equation of tangent
y13=1(x6)y-13=1(x-6)
y=x+7y=x+7
Axis intercepts: (0,7)(0,7) and (7,0)(-7,0)
Distance RS =72+72=\sqrt{7^2+7^2}
=49×2=\sqrt{49\times 2}
=72=7\sqrt{2}
Grading Criteria

Achievement (u)

  • Correct dydx\dfrac{dy}{dx}.

Merit (r)

  • Correct xx and yy values found (6,13)(6,13)
    with correct dydx\dfrac{dy}{dx}.

Excellence T1

  • T1
    Finds equation of tangent and both axis intercepts
    with correct dydx\dfrac{dy}{dx}.

Excellence T2

  • T2
    Correct solution
    with correct dydx\dfrac{dy}{dx}.
Video Explanation
2022 NCEA L3 Calculus Exam Walkthrough by infinityplusone(starts at 42:39)
Subscribe