2023 THREE(e)

Excellence
Question
A power line hangs between two poles.

The equation of the curve y=f(x)y = f(x) that models the shape of the
power line can be found by solving the differential equation:

ad2ydx2=1+(dydx)2a\,\dfrac{d^2y}{dx^2} = \sqrt{1+\left(\dfrac{dy}{dx}\right)^2}

Use differentiation to verify that the function y=a2(exa+exa)y = \dfrac{a}{2}\left(e^{\frac{x}{a}} + e^{-\frac{x}{a}}\right)

satisfies the above differential equation, where aa is a positive
constant.
Official Answer
y=a2(exa+exa)y=\dfrac{a}{2}\left(e^{\frac{x}{a}}+e^{-\frac{x}{a}}\right)
=(a2exa+a2exa)=\left(\dfrac{a}{2}e^{\frac{x}{a}}+\dfrac{a}{2}e^{-\frac{x}{a}}\right)
dydx=12exa12exa\dfrac{dy}{dx}=\dfrac{1}{2}e^{\frac{x}{a}}-\dfrac{1}{2}e^{-\frac{x}{a}}
d2ydx2=12aexa+12aexa\dfrac{d^2y}{dx^2}=\dfrac{1}{2a}e^{\frac{x}{a}}+\dfrac{1}{2a}e^{-\frac{x}{a}}
(dydx)2=14e2xa+14e2xa12\left(\dfrac{dy}{dx}\right)^2=\dfrac{1}{4}e^{\frac{2x}{a}}+\dfrac{1}{4}e^{-\frac{2x}{a}}-\dfrac{1}{2} \#(1)(1)
LHS =ad2ydx2=a\dfrac{d^2y}{dx^2}
=12exa+12exa=\dfrac{1}{2}e^{\frac{x}{a}}+\dfrac{1}{2}e^{-\frac{x}{a}} \#(2)(2)
RHS =1+(dydx)2=\sqrt{1+\left(\dfrac{dy}{dx}\right)^2}
=1+14e2xa+14e2xa12=\sqrt{1+\dfrac{1}{4}e^{\frac{2x}{a}}+\dfrac{1}{4}e^{-\frac{2x}{a}}-\dfrac{1}{2}}
=14e2xa+14e2xa+12=\sqrt{\dfrac{1}{4}e^{\frac{2x}{a}}+\dfrac{1}{4}e^{-\frac{2x}{a}}+\dfrac{1}{2}} \#(3)(3)
=(12exa+12exa)2=\sqrt{\left(\dfrac{1}{2}e^{\frac{x}{a}}+\dfrac{1}{2}e^{-\frac{x}{a}}\right)^2}
=12(exa+exa)=\dfrac{1}{2}\left(e^{\frac{x}{a}}+e^{-\frac{x}{a}}\right)
=ad2ydx2=a\dfrac{d^2y}{dx^2}
=LHS as required=\text{LHS as required}
Grading Criteria

Achievement (u)

  • Correct expression for dydx\dfrac{dy}{dx}.

Merit (r)

  • Correct expression for d2ydx2\dfrac{d^2y}{dx^2}.
    AND
    Evidence of progress with substitution into the differential equation
    Reaches either stage #(1)(1)
    OR
    stage #(2)(2).

Excellence T1

  • T1
    Reaches both stage #(2)(2)
    AND
    stage #(3)(3) with correct derivatives.
    OR
    Correct solution but with one minor error.

Excellence T2

  • T2 Correct proof with correct derivatives.
Video Explanation
2023 NCEA L3 Calculus Exam Walkthrough by infinityplusone(starts at 67:09)
Subscribe