2023 TWO(d)

Merit
Question
Find the xx-value(s) of any points of inflection on the graph of the function f(x)=3x2ln(x)f(x) = 3x^2 \ln(x).

You can assume that your point(s) found are actually point(s) of inflection.

You must use calculus and show any derivatives that you need to find when solving this problem.
Official Answer
f(x)=3x21x+lnx(6x)f'(x)=3x^2\cdot\frac{1}{x}+\ln x\cdot(6x)
=3x+6xlnx=3x+6x\ln x

f(x)=3+6x1x+lnx(6)f''(x)=3+6x\cdot\frac{1}{x}+\ln x\cdot(6)
=9+6lnx=9+6\ln x

f(x)=09+6lnx=0f''(x)=0\Rightarrow 9+6\ln x=0
lnx=1.5\ln x=-1.5
x=e1.5 or x=0.223x=e^{-1.5}\text{ or }x=0.223
Grading Criteria

Achievement (u)

  • Correct f(x)f'(x).

Merit (r)

  • Correct f(x)f'(x).
    AND
    Correct f(x)f''(x).
    AND
    Correct xx-value.

Excellence T1

-

Excellence T2

-
Video Explanation
2023 NCEA L3 Calculus Exam Walkthrough by infinityplusone(starts at 37:53)
Subscribe