2013 ONE(d)

Merit
Question
A curve is defined by the parametric equations:

x=5sintx = 5\sin t and y=3tanty = 3\tan t

Find the gradient of the normal to the curve at the point where t=π3t = \dfrac{\pi}{3}.

*Show any derivatives that you need to find when solving this problem.*
Official Answer
dxdt=5cost\dfrac{dx}{dt}=5\cos t
dydt=3sec2t=3cos2t\dfrac{dy}{dt}=3\sec^2 t=\dfrac{3}{\cos^2 t}
dydx=35cos3t\dfrac{dy}{dx}=\dfrac{3}{5\cos^3 t}
At t=π3t=\dfrac{\pi}{3}, dydx=245 (=4.8)\dfrac{dy}{dx}=\dfrac{24}{5}\ ( =4.8)
\therefore gradient of normal =524 (=0.2083)=\dfrac{-5}{24}\ (= -0.2083)
Grading Criteria

Achievement (u)

  • Correct dxdt\dfrac{dx}{dt} and dydt\dfrac{dy}{dt}.

Merit (r)

  • Correct solution including all correct derivatives.

Excellence T1

-

Excellence T2

-