2013 TWO(e)

Excellence
Question
A copper sheet of width 24 cm is folded, as shown, to make spouting.

Cross-section:
Loading diagram...
Find angle θ\theta which gives the maximum cross-sectional area.

*You do not need to prove that you have found a maximum.*

*Show any derivatives that you need to find when solving this problem.*
Official Answer
A(θ)=64sinθ+64sinθcosθA(\theta)=64\sin\theta+64\sin\theta\cos\theta
OR A(θ)=64sinθ+32sin2θA(\theta)=64\sin\theta+32\sin2\theta

A(θ)=64cosθ+64cos2θ64sin2θA'(\theta)=64\cos\theta+64\cos^2\theta-64\sin^2\theta
OR A(θ)=64cosθ+64cos2θA'(\theta)=64\cos\theta+64\cos2\theta
=64cosθ+64cos2θ64(1cos2θ)\quad\quad=64\cos\theta+64\cos^2\theta-64(1-\cos^2\theta)
=64(2cos2θ+cosθ1)\quad\quad=64(2\cos^2\theta+\cos\theta-1)

Minimum when A(θ)=0A'(\theta)=0

2cos2θ+cosθ1=02\cos^2\theta+\cos\theta-1=0

(2cosθ1)(cosθ+1)=0(2\cos\theta-1)(\cos\theta+1)=0

Or cosθ=12\cos\theta=\frac{1}{2} or cosθ=1\cos\theta=-1 (NO)

θ=60\theta=60^{\circ} or θ=π3\theta=\frac{\pi}{3}
Grading Criteria

Achievement (u)

-

Merit (r)

  • Correct derivative.

Excellence T1

  • Correct solution with correct derivatives.

Excellence T2

-