2014 ONE(c)

Merit
Question
If x=2sintx = 2\sin t and y=cos2ty = \cos 2t show that dydx=2sint\dfrac{dy}{dx} = -2\sin t.
Official Answer
x=2sinty=cos2tx=2\sin t\qquad y=\cos 2t
dxdt=2costdydt=2sin2t\dfrac{dx}{dt}=2\cos t\qquad \dfrac{dy}{dt}=-2\sin 2t
dydx=2sin2t2cost\dfrac{dy}{dx}=\dfrac{-2\sin 2t}{2\cos t}
=2×2sintcost2cost=\dfrac{-2\times 2\sin t\cos t}{2\cos t}
=2sint=-2\sin t
Grading Criteria

Achievement (u)

  • Correct expressions for dxdt\dfrac{dx}{dt} and dydt\dfrac{dy}{dt}.

Merit (r)

  • A correct solution.

Excellence T1

-

Excellence T2

-