2014 ONE(e)

Excellence
Question
What is the maximum volume of a cone if the slant length of the cone is 20 cm?
Loading diagram...
You do not need to prove that the volume you have found is a maximum.

*Show any derivatives that you need to find when solving this problem.*
Official Answer
h2+r2=400h^2+r^2=400
h=400r2h=\sqrt{400-r^2}
V=13πr2h=13πr2400r2V=\frac{1}{3}\pi r^2h=\frac{1}{3}\pi r^2\sqrt{400-r^2}
dVdr=23πr400r2+13πr212(400r2)122r\dfrac{dV}{dr}=\dfrac{2}{3}\pi r\sqrt{400-r^2}+\dfrac{1}{3}\pi r^2\cdot\dfrac{1}{2}(400-r^2)^{-\frac{1}{2}}\cdot-2r
dVdr=23πr(400r2)13πr3400r2\dfrac{dV}{dr}=\dfrac{\dfrac{2}{3}\pi r(400-r^2)-\dfrac{1}{3}\pi r^3}{\sqrt{400-r^2}}

At maximum volume: dVdr=0\dfrac{dV}{dr}=0

2(400r2)=r22(400-r^2)=r^2
3r2=8003r^2=800
r=16.3cmr=16.3\,\text{cm}
V=3225cm3V=3225\,\text{cm}^3

Alternative working:
r2=400h2r^2=400-h^2
V=13πr2h=13π(400h2)hV=\frac{1}{3}\pi r^2h=\frac{1}{3}\pi(400-h^2)h
=π3(400hh3)=\frac{\pi}{3}(400h-h^3)
dVdh=π3(4003h2)\dfrac{dV}{dh}=\frac{\pi}{3}(400-3h^2)

At maximum, dVdh=0\dfrac{dV}{dh}=0

4003h2=0400-3h^2=0
h2=4003h^2=\frac{400}{3}
h=203=11.547cmh=\frac{20}{\sqrt{3}}=11.547\,\text{cm}
V=3225cm3V=3225\,\text{cm}^3
Grading Criteria

Achievement (u)

  • Correct derivative for an incorrect but relevant expression for VV.

Merit (r)

  • A correct expression for dVdr\dfrac{dV}{dr}.

Excellence T1

  • A correct solution.
  • Units not required.

Excellence T2

-