2014 THREE(d)

Merit
Question
A container is winched up vertically from a point P at a constant rate of 1.5 m s11.5\ \mathrm{m\ s^{-1}}.
It is being observed from point Q, which is 20 m20\ \mathrm{m} horizontally from point P.
θ\theta is the angle of elevation of the container from point Q.
Loading diagram...
At what rate is the angle of elevation increasing when the object is 20 m20\ \mathrm{m} above point P?

*Show any derivatives that you need to find when solving this problem.*
Official Answer
dhdt=1.5 m s1\dfrac{dh}{dt}=1.5\ \text{m s}^{-1}

tanθ=h20\tan\theta=\dfrac{h}{20}

h=20tanθh=20\tan\theta

dhdθ=20sec2θ\dfrac{dh}{d\theta}=20\sec^2\theta

dθdt=dθdh×dhdt\dfrac{d\theta}{dt}=\dfrac{d\theta}{dh}\times\dfrac{dh}{dt}

=1.520sec2θ=\dfrac{1.5}{20\sec^2\theta}

When h=20h=20, θ=π4\theta=\dfrac{\pi}{4}, sec2θ=2\sec^2\theta=2

dθdt=1.540=0.0375 radians s1\dfrac{d\theta}{dt}=\dfrac{1.5}{40}=0.0375\ \text{radians s}^{-1}
Grading Criteria

Achievement (u)

  • A correct expression for dhdθ\dfrac{dh}{d\theta}

Merit (r)

  • A correct solution. Units not required.

Excellence T1

-

Excellence T2

-