2014 TWO(e)

Excellence
Question
A rectangle is drawn inside a right angled triangle, as shown in the diagram below.
Loading diagram...
Point B moves along the base of the triangle AC, beginning at point A, at a constant speed of 3 cm s1^{-1}.

At what rate is the area of the rectangle changing when point B is 20 cm from point A?

*Show any derivatives that you need to find when solving this problem.*
Official Answer
Loading diagram...
tan30=hy\tan 30=\dfrac{h}{y}
h=ytan30h=y\tan 30
cos30=y+b50\cos 30=\dfrac{y+b}{50}
y+b=50cos30y+b=50\cos 30
b=50cos30yb=50\cos 30-y
Area == base ×\times height
A=(50cos30y)(ytan30)A=(50\cos 30-y)(y\tan 30)
=50ysin30y2tan30=50y\sin 30-y^2\tan 30
=25yy23=25y-\dfrac{y^2}{\sqrt{3}}
dAdy=252y3\dfrac{dA}{dy}=25-\dfrac{2y}{\sqrt{3}}
At y=20y=20
dAdy=25403\dfrac{dA}{dy}=25-\dfrac{40}{\sqrt{3}}
dAdt=dAdy×dydt\dfrac{dA}{dt}=\dfrac{dA}{dy}\times\dfrac{dy}{dt}
=(25403)×3=\left(25-\dfrac{40}{\sqrt{3}}\right)\times 3
=5.72  cm2s1=5.72\;\text{cm}^2\text{s}^{-1}
Grading Criteria

Achievement (u)

  • Correct derivative for an incorrect but relevant expression for AA.

Merit (r)

  • A correct expression for dAdy\dfrac{dA}{dy}

Excellence T1

  • A correct solution. Units not Required.

Excellence T2

-