2016 THREE(d)

Merit
Question
If y=exsinxy = \dfrac{e^x}{\sin x}, show that dydx=y(1cotx)\dfrac{dy}{dx} = y(1 - \cot x).
Official Answer
y=exsinxy=\dfrac{e^x}{\sin x}
dydx=sinxexexcosxsin2x\dfrac{dy}{dx}=\dfrac{\sin x\cdot e^x-e^x\cos x}{\sin^2 x}
=sinxexsin2xexcosxsin2x=\dfrac{\sin x\cdot e^x}{\sin^2 x}-\dfrac{e^x\cdot \cos x}{\sin^2 x}
=exsinxexsinxcosxsinx=\dfrac{e^x}{\sin x}-\dfrac{e^x}{\sin x}\cdot\dfrac{\cos x}{\sin x}
=yycotx=y-y\cdot\cot x
=y(1cotx)=y(1-\cot x)
Grading Criteria

Achievement (u)

  • Correct expression for dydx\dfrac{dy}{dx}.

Merit (r)

  • Correct proof with correct derivative.

Excellence T1

-

Excellence T2

-