2017 TWO(d)

Merit
Question
Find the coordinates of the point P (x,y)(x,y) on the curve y=xy = \sqrt{x} that is closest
to the point (4,0)(4,0).
Loading diagram...
*You do not need to prove that your solution is the minimum value.*

*You must use calculus and show any derivatives that you need to find when solving this
problem.*
Official Answer
d2=(4x)2+(x)2d^2=(4-x)^2+(\sqrt{x})^2
=168x+x2+x=16-8x+x^2+x
=167x+x2=16-7x+x^2

Minimum distance d(d2)dx=0\Rightarrow \frac{d(d^2)}{dx}=0

d(d2)dx=7+2x=0\frac{d(d^2)}{dx}=-7+2x=0
x=3.5x=3.5
y=x=3.5y=\sqrt{x}=\sqrt{3.5}
P=(3.5,3.5)P=(3.5,\sqrt{3.5})

Alternative: d=(x27x+16)12d=(x^2-7x+16)^{\frac{1}{2}}

dddx=12(x27x+16)12(2x7)\frac{dd}{dx}=\frac{1}{2}(x^2-7x+16)^{-\frac{1}{2}}\cdot(2x-7)

=2x72x27x+16=\frac{2x-7}{2\sqrt{x^2-7x+16}}

Minimum when dddx=0\frac{dd}{dx}=0

2x7=02x-7=0
etc
Grading Criteria

Achievement (u)

  • Correct expression for dddx\dfrac{dd}{dx} or d(d2)dx\dfrac{d(d^2)}{dx}

Merit (r)

  • Correct solution with correct derivative.

Excellence T1

-

Excellence T2

-
Video Explanation
NCEA Level 3 Calculus Differentiation 2017 NZQA Exam - Worked Answers by infinityplusone(starts at 32:54)
Subscribe