2023 TWO(c)

Merit
Question
A curve is defined by the equation f(x)=exx2+2xf(x)=\dfrac{e^x}{x^2+2x}.

Find the xx-value(s) of any point(s) on the curve where the tangent to the curve is parallel to the
xx-axis.

*You must use calculus and show any derivatives that you need to find when solving this problem.*
Official Answer
f(x)=(x2+2x)exex(2x+2)(x2+2x)2f'(x)=\dfrac{(x^2+2x)e^x-e^x(2x+2)}{(x^2+2x)^2}
=ex((x2+2x)(2x+2))(x2+2x)2=\dfrac{e^x\left((x^2+2x)-(2x+2)\right)}{(x^2+2x)^2}
=ex(x22)(x2+2x)2=\dfrac{e^x(x^2-2)}{(x^2+2x)^2}

f(x)=0ex(x22)=0f'(x)=0\Rightarrow e^x(x^2-2)=0

ex0e^x\ne 0

x22=0x^2-2=0

x=±2 or x=±1.41x=\pm\sqrt{2}\text{ or }x=\pm 1.41
Grading Criteria

Achievement (u)

  • Correct derivative.

Merit (r)

  • Correct both values of xx found, with evidence of derivative.

Excellence T1

-

Excellence T2

-
Video Explanation
2023 NCEA L3 Calculus Exam Walkthrough by infinityplusone(starts at 33:55)
Subscribe