2017 TWO(c)

Merit
Question
The tangent to the curve y=xy = \sqrt{x} is drawn at the point (4,2)(4,2).
Loading diagram...
Find the co-ordinates of the point Q where the tangent intersects the xx-axis.

*You must use calculus and show any derivatives that you need to find when solving this problem.*
Official Answer
y=xy=\sqrt{x}
dydx=12x12=12x\dfrac{dy}{dx}=\dfrac{1}{2}x^{-\frac{1}{2}}=\dfrac{1}{2\sqrt{x}}
At (4,2)  dydx=124=14(4,2)\ \ \dfrac{dy}{dx}=\dfrac{1}{2\sqrt{4}}=\dfrac{1}{4}
Tangent: y=14x+cy=\dfrac{1}{4}x+c through (4,2)(4,2)
2=1+c2=1+c
c=1c=1
y=14x+1y=\dfrac{1}{4}x+1
y=0  0=14x+1y=0\ \Rightarrow\ 0=\dfrac{1}{4}x+1
x=4x=-4
Point QQ is (4,0)(-4,0).
Grading Criteria

Achievement (u)

  • Correct derivative.

Merit (r)

  • Correct solution with correct derivative.
  • Accept x=4x=-4.

Excellence T1

-

Excellence T2

-
Video Explanation
NCEA Level 3 Calculus Differentiation 2017 NZQA Exam - Worked Answers by infinityplusone(starts at 28:58)
Subscribe